QT 11.4
Determine the convergence/divergence of the following series. Show all work neatly with clear presentations including naming any tests used and showing all requirements have been met. Note: tests from previous sections may be helpful on some.

1) $\sum_{n=1}^{\infty} \frac{2+\sin n}{4^{n}}$ Compare to $\sum \frac{3}{4^{n}}$ which converge (geometric, $r=1 / 44$)
since $-1 \leq \sin n \leq 1$

$$
\begin{aligned}
& 0 \leq 2+\sin n \leq 3 \\
& 0 \leq \frac{2+\sin n}{4^{n}} \leq \frac{3}{4^{n}}
\end{aligned}
$$

So by companion test

$$
\sum_{n=1}^{\infty} \frac{2+\sin n}{4^{n}} \text { converges }
$$

2) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{n}+1} \quad$ Compare to $\sum \frac{1}{n^{2}}$ which is a convergent p series ($p=2>1$)
since orln $\ln <n$ for $n \geq 1$

$$
0 \leqslant \frac{\ln n}{n^{3}+1}<\frac{n}{n^{3}+1}<\frac{n}{n^{3}}=\frac{1}{n^{2}}
$$

So by comparison test, $\overline{\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}+1}}$ converges
(show condition of the testused is satisfied)
3) $\sum_{n=1}^{\infty} \frac{3 n}{\sqrt{4 n^{2}+3}} \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{3 n}{\sqrt{4 n^{2}+3}} \frac{\sqrt{1 / n^{2}}}{\sqrt{1 / n^{2}}}=\lim _{n \rightarrow \infty} \frac{3}{\sqrt{4+3 / n^{2}}}=\frac{3}{2}$

Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$, the series
$\sum_{n=1}^{\infty} \frac{3 n}{\sqrt{4 n^{2}+3}}$ diverges by Test for divergence
4) $\sum_{n=1}^{\infty} \frac{n-3}{n \sqrt{n}}$ Compare to $\sum \frac{1}{\sqrt{n}}$ which is a divergent p series, $p=1 / 2<1$

Unfortunately,

$$
\frac{n-3}{n \sqrt{n}}>\frac{n}{n \sqrt{n}}=\frac{1}{\sqrt{n}}
$$

That what would need to use the comparison test
so apply Limit cumerison test ($-\left(\frac{n-3}{n \sqrt{n}}>0\right.$ for $n>3$)

$$
c=\lim _{n \rightarrow \infty} \frac{\frac{n-3}{n \sqrt{n}}}{\frac{1}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{(n-3) \sqrt{n}}{n \sqrt{n}}=\lim _{n \rightarrow \infty} \frac{n-3}{n}=1
$$

Since c is finite and nonzero, and since. $\sum \frac{1}{\sqrt{n}}$ diverges, so must $\sum \frac{n-3}{n \sqrt{n}}$ by LCT

