Q7 11.4

Determine the convergence/divergence of the following series. Show all work neatly with **clear presentations** including naming any tests used and showing all requirements have been met. Note: tests from previous sections may be helpful on some.

since
$$-1 \le \sin n \le 1$$

 $0 \le 2 + \sin n \le 1$
 $0 \le 2 + \sin n \le 3$
 $0 \le \frac{2 + \sin n}{4^n} = \frac{3}{4^n}$
So by companson test

$$\sum_{n=1}^{\infty} \frac{2 + \sin n}{4^n}$$
 converges

2)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3+1}$$
 Compare to $\sum_{n=1}^{\infty} \frac{\ln n}{n^3+1}$ Compare to $\sum_{n=1}^{\infty} \frac{\ln n}{n^3+1}$ Converges

Since of line of $\frac{1}{n^3+1}$ Converges

So by comparison test,

 $\frac{\sum_{n=1}^{\infty} \frac{\ln n}{n^3+1}}{\sum_{n=1}^{\infty} \frac{\ln n}{n^3+1}}$ converges

(show condition of the test-used is satisfied)

3)
$$\sum_{n=1}^{\infty} \frac{3n}{\sqrt{4n^2+3}}$$
 $\lim_{N \to \infty} Q_N = \lim_{N \to \infty} \frac{3n}{\sqrt{4n^2+3}} = \lim_{N \to \infty} \frac{3n}{\sqrt{4n^2$

Since liman +0, the series

 $\sum_{n=1}^{\infty} \frac{3n}{\sqrt{4n^2+3}}$ diverges by Test for divergency

4) $\sum_{n=1}^{\infty} \frac{n-3}{n\sqrt{n}}$ Compare to $\sum_{n=1}^{\infty} \frac{n-3}{n\sqrt{n}}$ Which is a divergent P sevies, P=1/2~1

Unfortunately,

 $\frac{n-3}{n\sqrt{n}} = \frac{1}{\sqrt{n}}$

Thats what would need to use the comparison test

So apply Limit Comerison test-(n-3 20 for ns 3)

 $C = \lim_{n \to \infty} \frac{1}{u \sqrt{n}} = \lim_{n \to \infty} \frac{1}{(n-3)\sqrt{n}} = \lim_{n \to \infty} \frac{1}{(n-3)\sqrt{n}} = 1$

Since c is finite and nonzero, and since Eth Liverges, so must = n-3 by LCT